Determinants of single photon response variability
نویسندگان
چکیده
The responses to single photon absorptions (quantum bumps) vary randomly in size in Limulus photoreceptors. This variability is a natural consequence of simple chemical reactions involving a small number of molecules. The measured size distributions differ significantly from the exponential distribution predicted by the simplest transduction cascade models, one feature of which is that light-activated rhodopsin (R*) is turned off in a single step process. As shown in the companion paper, the nonexponential size distributions can be accounted for if R* is turned off in a multi-step process. This would lead to a nonexponential (peaked) distribution in the number of G-protein molecules activated during a quantum bump and to a nonexponential distribution in the size of bumps. To test this possibility we measured the distribution of quantum bump size under two conditions in which the variability in the number of activated G-proteins was eliminated. eliminated. In one method, bumps were produced by direct activation of single G-proteins using GTP-gamma-S; in the second GDP-beta-S reduced the R* gain to the point where most quantal events were due to activation of a single G-protein. In both cases the size distribution of bumps became much closer to an exponential distribution than that of normal light-induced bumps. These results support the idea that the size distribution of light-induced bumps is dependent on events at the R* level and reflects to the multi-step deactivation of R*.
منابع مشابه
Neural Imaging Using Single-Photon Avalanche Diodes
Introduction: This paper analyses the ability of single-photon avalanche diodes (SPADs) for neural imaging. The current trend in the production of SPADs moves toward the minimumdark count rate (DCR) and maximum photon detection probability (PDP). Moreover, the jitter response which is the main measurement characteristic for the timing uncertainty is progressing. Methods: The neural imaging pro...
متن کاملMonte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography
Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...
متن کاملCoherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملArrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors.
Reliable signal transduction via G-protein-coupled receptors requires proper receptor inactivation. For example, signals originating from single rhodopsin molecules vary little from one to the next, requiring reproducible inactivation of rhodopsin by phosphorylation and arrestin binding. We determined how reduced concentrations of rhodopsin kinase (GRK1) and/or arrestin1 influenced the kinetics...
متن کاملSingle-photon detection by rod cells of the retina
At low light levels, the visual system detects and counts photon absorptions with a reliability close to limits set by statistical fluctuations in the number of absorbed photons. Thus the rod photoreceptors that provide the input signals to the dark-adapted visual system act as nearly perfect photon counters. This elegant performance is possible because light detection in the rods satisfies fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 103 شماره
صفحات -
تاریخ انتشار 1994